Hauptkrümmung — ist ein Begriff aus der Differentialgeometrie. Jedem Punkt einer gegebenen Fläche im dreidimensionalen Raum ( ) werden zwei Hauptkrümmungen zugeordnet. Inhaltsverzeichnis 1 Definition 2 Beispiele 3 … Deutsch Wikipedia
Hauptkrümmung — Hauptkrümmung, Mathematik: Krümmung … Universal-Lexikon
Bikonvex — konvex (lat. convexus‚ gewölbt, gerundet, nach außen gewölbt) bezeichnet allgemein eine positive Krümmung eine Verlaufseigenschaft analytischer Funktionen, siehe Konvexe und konkave Funktionen nach oben gewölbte Flächen, siehe Hauptkrümmung… … Deutsch Wikipedia
Konkavität — konkav (lat. concavus‚ ausgehöhlt, einwärts gewölbt) bezeichnet: allgemein eine negative Krümmung eine Verlaufseigenschaft analytischer Funktionen, siehe konvexe und konkave Funktionen nach unten gewölbte Flächen, siehe Hauptkrümmung… … Deutsch Wikipedia
Konvexität — konvex (lat. convexus‚ gewölbt, gerundet, nach außen gewölbt) bezeichnet allgemein eine positive Krümmung eine Verlaufseigenschaft analytischer Funktionen, siehe Konvexe und konkave Funktionen nach oben gewölbte Flächen, siehe Hauptkrümmung… … Deutsch Wikipedia
Abwickelbar — Eine abwickelbare Fläche bezeichnet aus der Anschauung heraus in der (Differential)geometrie, der Kartografie und der Topologie eine zweidimensionale Fläche, die sich ohne innere Formverzerrung in die euklidische Ebene transformieren lässt. D. h … Deutsch Wikipedia
Abwicklung (Technisches Zeichnen) — Eine abwickelbare Fläche bezeichnet aus der Anschauung heraus in der (Differential)geometrie, der Kartografie und der Topologie eine zweidimensionale Fläche, die sich ohne innere Formverzerrung in die euklidische Ebene transformieren lässt. D. h … Deutsch Wikipedia
Entwickelbar — Eine abwickelbare Fläche bezeichnet aus der Anschauung heraus in der (Differential)geometrie, der Kartografie und der Topologie eine zweidimensionale Fläche, die sich ohne innere Formverzerrung in die euklidische Ebene transformieren lässt. D. h … Deutsch Wikipedia
Gausskrümmung — In der Theorie der Flächen im dreidimensionalen Raum ( ), einem Gebiet der Differentialgeometrie, ist die gaußsche Krümmung (das gaußsche Krümmungsmaß), benannt nach dem Mathematiker Carl Friedrich Gauß, der wichtigste Krümmungsbegriff neben der… … Deutsch Wikipedia
Gauß-Krümmung — In der Theorie der Flächen im dreidimensionalen Raum ( ), einem Gebiet der Differentialgeometrie, ist die gaußsche Krümmung (das gaußsche Krümmungsmaß), benannt nach dem Mathematiker Carl Friedrich Gauß, der wichtigste Krümmungsbegriff neben der… … Deutsch Wikipedia